Evolution and learning in heterogeneous environments

نویسنده

  • Daniel Jones
چکیده

A real-world environment is complex and non-uniform, varying over space and time. This thesis demonstrates the impact of such environmental heterogeneity upon the ways in which organisms acquire information about the world, via a series of individual-based computational models that apply progressively more detailed forms of environmental structure to understand the causal impact of four distinct environmental factors: temporal variability; task complexity; population structure; and spatial heterogeneity. We define a baseline model, comprised of an evolving population of polygenic individuals that can follow three learning modes: innate behaviour, in which an organism acts according to its genetically-encoded traits; individual learning, in which an organism engages in trial-and-error to modify its inherited behaviours; and social learning, in which an individual mimics the behaviours of its peers. This model is used to show that environmental variability and task complexity affect the adaptive success of each learning mode, with social learning only arising as a dominant strategy in environments of median variability and complexity. Beyond a certain complexity threshold, individual learning is shown to be the sole dominant strategy. Social learning is shown to play a beneficial role following a sudden environmental change, contributing to the dissemination of novel traits in a population of poorly-adapted individuals. Introducing population structure in the form of a k-regular graph, we show that bounded and rigid neighbourhood relationships can have deleterious effects on a population, diminishing its evolutionary rate and equilibrium fitness, and, in some cases, preventing the population from crossing a fitness valley to a global optimum. A larger neighbourhood size is shown to increase the effectiveness of social learning, and results in a more rapid evolutionary convergence rate. The research subsequently focuses on spatially heterogeneous environments, proposing a new method of constructing an environment characterised by two key metrics derived from landscape ecology, “patchiness” and “gradient”. We show that spatial complexity slows the rate of genetic adaptation when movement is restricted, but can increase the rate of evolution for mobile individuals. Social learning is shown to be particularly beneficial within heterogeneous environments, particularly when mobility is restricted, suggesting that phenotypic plasticity may act as a substitute for mobility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments

Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...

متن کامل

Influence of learning on range expansion and adaptation to novel habitats

Learning has been postulated to 'drive' evolution, but its influence on adaptive evolution in heterogeneous environments has not been formally examined. We used a spatially explicit individual-based model to study the effect of learning on the expansion and adaptation of a species to a novel habitat. Fitness was mediated by a behavioural trait (resource preference), which in turn was determined...

متن کامل

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

An Analysis of Self-Regulatory Learning Strategies in Secondary School Blended Learning Atmospheres: A Synthesis Research

This synthesis research has aimed to identify the features of blended learning environments which support self-regulatory learning strategies in high school students. The statistical population was derived from five foreign databases, consisting of 128 articles from 2017 to 2020. The data obtained were integrated using Sandelowski & Barroso's meta-synthesis method (2005). STROBE Checklist was u...

متن کامل

Pedagogical Principles of the Theories of Interaction in Distance Learning: The Study of Interaction Anderson Model in Web-based Environments

Background: Interaction is considered a necessary, and integral part in all forms of distance learning and web -based learning environments. That how much technologies can support and help interactions is one of the most important issues that should be considered in the web-based environment. These interactions seek to engage students with other students, teachers and also non-human contex...

متن کامل

Designing collaborative learning model in online learning environments

Introduction: Most online learning environments are challenging for the design of collaborative learning activities to achieve high-level learning skills. Therefore, the purpose of this study was to design and validate a model for collaborative learning in online learning environments. Methods: The research method used in this study was a mixed method, including qualitative content analysis and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015